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Abstract

We study environments with intermediation (trade via middlemen) and credit

that is constrained (either exogenously, or endogenously due to limited commit-

ment). Existing models of middlemen assume they have advantages in search,

bargaining, information, etc. Here they have advantages using credit, because

they are better at credibly promising payments or enforcing others’ payments.

With exogenous debt limits there is a unique equilibrium transaction pattern —

direct trade, indirect trade, or both — depending on parameters. With endoge-

nous limits, there are multiple equilibria, including ones where credit conditions

fluctuate as self-fulfilling prophecies. Depending on details, intermediaries may

attenuate or amplify credit cycles.
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Many middlemen provide credit... This financial support helps businesses

sustain operations and enhances market liquidity. Marketing for Managers,

The Critical Role of Middlemen in Enhancing Market Dynamics.

Intermediaries who are able to make credible commitments bring advantages

over contracts between buyers and sellers that are subject to renegotiation.

Market Microstructure: Intermediaries and the Theory of the Firm.

1 Introduction

This paper studies environments with intermediation, by which we mean trade via mid-

dlemen, and credit that may be constrained, either exogenously, or endogenously due

to limited commitment. As background, Rubinstein and Wolinsky (1987) emphasized

that intermediated trade is a feature of many if not most real-world markets, yet there

is no role for this in classical equilibrium theory, and proposed a framework based on

search and bargaining. Following their work, a literature emerged where middlemen

arise endogenously when certain agents have various advantages over others: they may

be faster at locating trading partners; they may have lower search or storage costs;

they may be able to hold larger or more diverse inventories; they may possess superior

information; or they may be good at bargaining.1

We introduce a new dimension along which middlemen may have advantages: they

are better at using credit, by more reliably promising future payment, or enforcing

payment by others. This is realistic in many contexts. Consider trying to sell your car,

which is a leading example because it rings true, and because there is nice empirical

work on intermediation in automobile markets (see Murry et al. 2025 and references

therein). If potential buyers do not have sufficient liquidity for immediate settlement,

1As there are many related papers, we posted an online bibliography at https://github.com/qiao-

ziqi/middlemen, but here is a sample. In Rubinstein and Wolinsky (1987) middlemen are faster than

producers at contacting customers; in Biglaiser (1993) and Li (1998) they have superior information; in

Masters (2008) and Nosal et al. (2015) they have higher bargaining power or lower costs; in Shevchenko

(2004) and Watanabe (2010) they hold bigger or better inventories. We also mention Urias (2018),

who has an environment similar to ours, but with crucial differences in assumptions (producers are

not allowed to trade directly with consumers) and applications (credit is not analyzed). Also see Hu

et al. (2025), although again there are differences in assumptions and applications (they are interested

in supply chains where intermediaries provide working capital). Gu et al. (2025), like this paper, study

dynamics with middlemen and cite related work, but it has nothing to do with credit.
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deferred payment is an option, but you might worry about them reneging. An alterna-

tive is to sell your car to a dealer, where default can be less of a concern, either because

they have liquidity for immediate settlement (deep pockets) or they are less likely to

renege on deferred settlement (due to reputational considerations). Of course, when

dealers sell, their customers may have commitment issues, but it is no stretch to think

used-car dealers are better than you at collecting debt.2

Our contribution can be seen as either putting debt limits into theories of interme-

diated trade, or introducing middlemen into theories of imperfect credit. The result is

greater than the sum of its parts: there are interesting interactions between credit and

middlemen that would be missed if one only examined each in isolation.

In terms of modeling, we build on recent work in the spirit of Rubinstein-Wolinsky

by Gong and Wright (2024). That paper is not about credit, but the environment

is a natural one in which to introduce deferred settlement. In particular, as in La-

gos and Wright (2005), it has both centralized and decentralized trade, and features

an asynchronicity of expenditures and receipts: sometimes agents want to buy in the

decentralized market while their incomes accrue in the centralized market. It is also

flexible since, as is known from other applications, it easily incorporates various fric-

tions and alternative ways to determine the terms of trade. Also, different from most

related work, this framework replaces the usual three-sided market, where producers,

consumers and middlemen all interact, with two two-sided markets, one with wholesale

trade between producers and middlemen, and one with retail trade between buyers and

sellers, which is arguably more realistic and definitely more tractable.

The objects being traded can be goods, inputs or assets, which is relevant to the

extent that in reality there is intermediated trade in all three. Another key feature

is that these objects can be either indivisible or divisible, different from much related

2On imperfect credit, there are too many papers with exogenous debt limits, but on more-or-less

endogenous limits relevant examples include Kehoe and Levine (1993), Alvarez and Jermann (2000),

Gu et al. (2013a,b), Gu et al. (2016), Azariadis and Kass (2007,2013), Lorenzoni (2008), Hellwig and

Lorenzoni (2009), Sanches and Williamson (2010), Carapella and Williamson (2015) and Kiyotaki

and Moore (1997). These do not have middlemen like the papers mentioned in fn. 1, although there is

some work with banks, a kind of intermediary (see the survey by Gu et al. 2023).
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work. This lets us analyze the intensive margin — the size of trades — not just the

extensive margin — the number of trades. Also note that divisibility can be interpreted

in terms of quantity or quality, and the latter is interesting because even if buyers want

just one unit when shopping for, say, a car, obviously cars and most other things can

vary in quality. Moreover, divisibility is important for modeling debt limits, technically,

and substantively: it is not merely that buyers may not have enough credit to get

something, it may be that they can but have to settle for a lower quantity/quality.

First we characterize equilibrium with exogenous debt limits to capture the above-

mentioned forces, middlemen may be good at getting credit from producers or ex-

tending/enforcing credit to consumers. We show equilibrium exists and is unique.

Depending on parameters — debt limits, bargaining power, etc. — we pin down the

endogenous pattern of exchange, either no trade, only direct trade from producers to

consumers, only indirect trade from producers to middlemen, then from middlemen to

consumers, or both direct and indirect trade. This is useful because in reality some

markets have mostly direct trade, others have mostly indirect trade, and still others

are in between (see fn. 13), and our results elucidate fundamental factors determining

which of these trade patterns might emerge.

Then we endogenize debt limits by saying repayment must be incentive compatible

given the punishment for agents who renege is the loss of future credit. Note that while

we often use the word renege, suggesting that the creditor gets nothing from the debtor,

this may be too strong of an interpretation. Below we discuss versions of the model

where a creditor gets a fraction of what is owed, or, equivalently for our purposes, gets

what is owed with some probability. One can think of this as having agents “write down

the debt,” which is common in reality, and which is how we interpret “renegotiation”

in the second epigraph (due to Spulber 1999). Hence commitment here can involve a

credible promise to not renegotiate, i.e. to not partially default.

In any case, endogenizing debt limits generates multiple equilibria, including non-

stationary equilibria with fluctuations in credit conditions, intermediation activity,
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prices, etc. In some versions these fluctuations are deterministic, in others they are

necessarily stochastic. Also, they can involve regime switching with recurrent changes

in the trade pattern (no trade, direct trade from producers to consumers, etc.). Also,

they are self-fulfilling prophecies, not due to fundamental factors, consistent with the

long-standing notion that intermediation is excessively volatile or unstable.3 To be

clear, the point we emphasize is not that intermediation causes instability, it is that

limited commitment provides an endogenous role for intermediation and an endoge-

nous source of dynamics, suggesting a more subtle but no less interesting link between

intermediaries and volatility.

Characterizing these dynamics is one of our main goals. In one version of the

model, we prove there are stochastic (sunspot) equilibria but not deterministic cycles;

in another version both are possible. In either case we can ask if middlemen tend to

attenuate or amplify fluctuations. The answer is that it can go either way on both

the extensive and intensive margins: over the cycle, when there are fewer producers

in the market, middlemen may enter with a higher or lower probability; and when

producers bring lower quantity/quality to the market middlemen may bring higher or

lower quantity/quality.4

As more motivation, there is a growing interest in BNPL (buy now pay later) plans

by academics and regulators.5 Of course, credit issued to consumers by retailers is not

new, with an early example being the Charga-plate system popular in the 1930’s-50’s

(Frankel 2024). Even earlier, in the 1900s cards were launched by department stores

3Myerson (2012) suggests such cycles are interesting, but his model is unrelated. More generally,

it is an old idea that financial intermediaries are susceptible to instability, including banks (Diamond

and Dybvig 1982) and other financial institutions (again see the Gu et al. 2023 survey).
4Further on dynamics, it is well known search models with increasing returns can have multiplicity

and belief-based dynamics (e.g. Diamond 1982; Diamond and Fudenberg 1989; Mortensen 1999).

That is not what is going on here: we have constant returns. It is also understood that monetary

search models generate multiplicity and belief-based dynamics since what you accept in payment can

depend on what others accept (see surveys by Lagos et al. 2017 and Rocheteau and Nosal 2017). That

is not what is going on here, although there is a similarity: payment frictions take center stage.
5See, e.g., Han et al. (2024) and Stavins (2024). According to the latter, BNPL is “a short-term,

interest-free credit option for retail purchases that is becoming increasingly popular, and evidence

indicates that its use is significantly higher among financially vulnerable consumers... BNPL can thus

provide short-term credit to consumers who lack alternative sources of credit.” In terms of size, BNPL

usage grew from $50 billion in 2019 to $370 billion in 2023 (Mojon et al. 2023).
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and oil companies that, different from many cards today, could only be used at specific

vendors (Tretina and Little 2004). With the payment landscape evolving rapidly, these

issues seem worth study, but that is just one application — the bigger idea is to study

how credit and intermediated trade interact in a general setting.

In what follows, Section 2 describes the environment. Sections 3 and 4 analyze

stationary equilibria with exogenous debt limits in a baseline model and extensions.

Section 5 endogenizes debt limits and discusses dynamics. Section 6 concludes.6

2 Environment

A continuum of agents live forever in discrete time. There are three types: consumers

, producers  , and middlemen  , with population measures ,  and . In

each period, three markets convene sequentially. First there is a wholesale market

WM, where type  agents may trade an object to type  , with  denoting quantity

or quality. Type  cannot participate in WM — an assumption about spatial/temporal

separation — but there is a retail market RM where they may buy  ≤  from sellers

that are either agents that have traded in WM or  agents that go to RM in search

of direct trade with . In fact, we do not need  agents to literally produce the object

being traded, and in some contexts it is better to interpret them as endowed with it.

Both WM and RM are decentralized, with bilateral random matching, bargaining,

and payment frictions. After they close, there is a frictionless centralized market CM,

where all agents sell labor , buy a numeraire good  and settle debts. The idea is

that agents use credit for RM and WM purchases, to be honored in the next CM. This

is different from related models where spot payments are made in transferable utility.

6In addition to work following Rubinstein and Wolinsky (1987), there are papers using a different

search model, focusing on dealers in OTC asset markets, following Duffie et al. (2005); see Hugonnier

et al. (2025) for a survey. These differ in various ways — e.g., in those models dealers typically hold

no inventories, they simply reallocate assets across investors via a frictionless interdealer market. An

exception is Weill (2008), who has inventories and studies dynamics, but only transitions to steady

state, not endogenous fluctuations, which as Trejos and Wright (2016) show cannot occur in such a

model. Also those papers generally assume transferable utility, but it would be good to add payment

frictions (see Martel et al. 2023 for a step in that direction, although they not mention imperfect

commitment or credit, they simply impose an exogenous payment ceiling  ≤ ̄ ).
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Transferable utility is equivalent to a special case of our setup, with perfect credit, but

we are interested in imperfect credit. That is microfounded below, with endogenous

debt limits, but it is useful to first study exogenous limits since they are interesting in

their own right and provide a stepping stone to later analysis.

In CM all agents have discount factor  ∈ (0 1) for next period, and instantaneous
utility ()−  with  0(·)  0   00(·). As usual, quasi-linear utility implies everyone
starts next period with a clean slate: history independence. It also lets us restrict

attention, without loss of generality, to short-term debt cleared in every CM. In RM,

 gets  () from acquiring , with 0 (·)  0  00(·) and  (0) = 0. Type  produce

 (when it is produced and not an endowment) in WM after they meet type  and

decide to trade with them, or decide to go to RM seeking direct trade. There are two

versions:  can be indivisible (i.e., fixed at the production stage), or divisible (a choice

at the production stage). In either version, it is divisible in RM trade. Production

costs () in units of numeraire, or labor, since we assume that 1 unit of  produces

 unit of , with 0(·)  0 ≤ 00(·),  (0) = 0 and 0(0)0 (0) =∞. Besides production
cost,  and  need to pay an entry cost  whenever going to RM.7

Later we say that any −  left over after RM trade can be carried into CM where

it turns into  (− ) units of numeraire, called scrap value. While for some results

below   0 is interesting, for now  = 0. In any case, assume  ≤ 0(0), meaning

 does not want to produce only for scrap value. Also assume  can only produce

once per period, so trading in WM means sitting out the RM (we analyzed a version

where  can produce twice, for both WM and RM trade, but ruling that out simplifies

the analysis without dramatically affecting the results and captures the idea that for

 RM trade is an opportunity cost of WM trade).

Meetings are determined by a CRS technology. The measure of WM meetings is

 ( ) where  and  are the fixed measures of WM buyers and sellers,

7While  can be a good and  () a utility function, one can also interpret  as an input and  ()

a production function with output in units of CM numeraire , or  can be an asset with  () the

buyers’ return and  () the sellers’ return in the same units. In general, when  does not produce ,

but it is an endowment,  () is  ’s opportunity cost of selling it.
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 and  . Similarly, the measure of RM meetings is ( ) where the measure of

RM buyers  is fixed but the measure of RM sellers  is endogenous. In either case,

the buyer-seller ratio, called market tightness, determines the meeting probabilities.

This is all standard, but it is worth emphasizing that having two two-sided markets

is what allows the use of general meeting technologies, while papers with three-sided

markets typically use only a special case where  is proportional to Σ.

Terms of trade are determined by generalized Nash bargaining, with  the bar-

gaining power of  when trading with , and  = 1− .
8 For WM trade,  produces

 and sells  =  to  (this is obvious when  is indivisible; when it is divisible,

it is assumed  cannot produce  and sell    to  , then take − to RM

to sell to , as that is like producing twice, which is ruled out). However, when it is

divisible  can produce one  for trade with and a different  for going to RM

in search of direct trade. Then  ≤  is what  sells to  and  ≤  is what

 sells to  in RM. By way of preview, in equilibrium  = , even if there is scrap

value   0, but that is a result, not an assumption.9

Associated with ,  and  are payments ,  and  due in the next

CM. These are constrained by  ≤ , which can reflect properties of buyers — e.g.,

their ability to commit or credibly promise future payment — as well as sellers — e.g.,

their ability to collect debt, perhaps by punishing those who renege. In addition to the

’s and ’s, we have these endogenous choices: Allowing for mixed strategies,  is the

probability  and  trade in WM meetings, and  is the probability  goes to RM

after not trading in WM.

8We also tried Kalai’s alternative to Nash, since it is known that the bargaining solution matters

when there are payment constraints (e.g., Aruoba et al. 2007). Most, if not all, results below are similar

with Kalai bargaining. One can also use alternatives like price posting with random or directed search,

as well as Walrasian price taking, which might make more sense when meetings are not bilateral but

involve large numbers as in, e.g., the labor-search model of Lucas and Prescott (1974) or the money-

search model of Rocheteau and Wright (2005).
9Still, we can give the intuition here. First, the result says  =  on, but not necessarily off, the

equilibrium path. If sellers were to find themselves in RM with a large , they might sell   , but

then in equilibrium they would not bring such a large  to RM. An analogy to monetary theory is

useful. In Lagos and Wright (2005), e.g., on the equilibrium path buyers spend all their money when

they meet sellers; off the equilibrium path, if they had a lot of money they might not spend it all, but

then they do not bring so much money.
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3 Baseline Results

We start with the situation where the WM debt limit does not bind, as can be guar-

anteed by  = ∞. This is a leading case because it captures the idea that  has

excellent credit, or equivalently deep pockets, in dealing with  , and lets us focus on

imperfect credit in RM (but see Section 4.1). To define equilibrium we exploit a general

feature of search-and-bargaining models: equilibrium is a list of value functions satis-

fying dynamic programming equations, terms of trade satisfying bargaining solutions,

state variables satisfying steady state conditions (more generally, laws of motion), and

decisions satisfying best response conditions. We discuss each in turn.

Denote the value functions for type  in WM, RM and CM by  
 , 


 and  

 .

The CM problem for type  is

 
 (Ω) = max



©
()− +  

+1

ª
st  = Ω+  (1)

where  is labor income when 1 unit of  produces 1 unit of , and Ω is wealth. For

 , Ω includes accounts receivable from either WM or RM; for , it includes accounts

payable from RM; and for , it includes accounts receivable from RM minus accounts

payable from WM. As is standard in models like this, given an interior solution for ,

it is immediate that  
 is linear with slope 1.10

Moving to WM, for  ,

 
 =  

 (0) +  [ − ()] (2)

+(1− )max


£
 
 ()−  

 (0)− ()− 
¤


The first term is the value of not producing and going to CM with Ω = 0. The second

is the probability of trading in WM times the surplus from continuing with accounts

receivable  minus cost (), using the result that 

 ()− 

 (0) =  by the

linearity of  
 . The third is the probability of not trading in WM, and with probability

10It is also immediate that  is independent of Ω, and that one-period credit is without loss of

generality as agents are happy to settle debts in CM. That is what we mean by history independence,

and it all follows easily from quasi-linear CM utility (as in Lagos and Wright 2005), but the results

also hold for any ̃ ( 1− ) such that ̃11̃22 = ̃212 (as in Wong 2016).
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 producing and going to RM, which entails surplus  
 () −  

 (0) − () − .

For the choice of   ∈ Q, where Q is the production set, we have two options:

indivisibility, Q = {} for some constant , as assumed in most related papers; and
divisibility, Q = [0∞), which generates more insights with additional work.
For  in WM,

 
 =  

 (0) + 
£
 
 ()−  

 (0)−  − 
¤

(3)

using the linearity of  
 and the fact that  only trades in WM if they then go to

RM.11 Moving to RM, for 

 
 () =  

 () +  ( −) , (4)

where the second term comes from  
 ( + − )−  

 () =  − .

Similarly, for  in RM

 
 () =  

 () +  ( −)  (5)

For both  and  these are conditional on being in RM, after paying the entry cost

. For  in RM

 
 =  

 (0) + [()− ] + [()− ] (6)

where  ≤ , in general, but clearly  =  holds if, e.g., there is no scrap value,

 = 0.

Terms of trade when  sells to  come from generalized Nash bargaining,

( ) = argmax
()

 ( )
  ( )

 (7)

where the ’s are surpluses defined as follows: When  sells to ,

 =  − and  = ()−  (8)

11Notice in (3) that the term in brackets looks like immediate settlement due to the appearance of

−, but it actually is the anticipation of deferred settlement in the next CM; in this sense one can
say perfect credit looks like deep pockets.

9



When  sells to ,

 =  − and  = ()−  (9)

And when  sells to 

 =  − ()− 
£
 
 ()−  

 (0)− ()− 
¤

(10)

 =  
 ()−  

 (0)− −  (11)

There are constraints in (7):  ≤ ; and  = , for now, but more generally

 ≤ . Note that  is determined bilaterally between  and  , while  is

unilaterally chosen by  . Also note that there are holdup problems in RM, since when

 meets  the production cost is sunk, when  meets  the WM debt is sunk, and

for both  and  the RM entry costs  is sunk.

Next we determine participation in WM and RM and hence the meeting probabil-

ities. In WM,  and  come from  ( ) with  and  fixed. In RM,

while the measure of buyers is fixed at , the measure of sellers includes that trade

in WM plus  that do not trade in WM and go to RM,

 =  [ + (1− ) ]  (12)

We call (12) a steady state condition, but it is basically static.12 Also, in RM the

meeting technology treats all sellers the same in generating  and  =  = ,

but the outcome of a meeting depends on the seller type,  or  , determined by

 =  (1− )  and  = .

Now consider strategy profile (  ), where  is the probability  and  trade in

WM, and  the probability  goes to RM after not trading in WM. For  we have:

 =

⎧⎨⎩
0 if  

 ()−  
 (0) ≤ () + 

[0 1] if  
 ()−  

 (0) = () + 

1 if  
 ()−  

 (0) ≥ () + 

(13)

12Static in the same sense that, e.g., vacancies are static in Pissarides (2000). There are state

variables in the model, the ’s, but for now they are exogenous and constant over time so we do not

bother to keep track of them here. That will change below.
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For  , if there is transferable utility  wants to trade with  iff  wants to trade

with  iff  +   0. Since we do not have transferable utility, in general, WM

trade requires the proverbial double coincidence of wants:

 =

⎧⎨⎩ 0 if   0 or   0

[0 1] if   ≥ 0 and  = 0

1 if   0 and   0

(14)

However, for now  =∞, so  ≤  is slack and hence:

 =

⎧⎨⎩ 0 if  +   0

[0 1] if  +  = 0

1 if  +   0

(15)

A stationary equilibrium, or SE, is defined by: ( 
 ) for each type  in each market

 satisfying (1)-(6); ( ) satisfying (7)-(11);  satisfying (12); () satisfying (2)

and (7); and (  ) satisfying (13) and (15). In fact, the stationary qualification is not

necessary, because when the ’s are exogenous there are no other equilibria, something

that changes when the ’s are endogenous. So we use the SE label, but when we say

below that, e.g., there is a unique stationary equilibrium it is trivial to generalize that

by saying there is a unique equilibrium.

For indivisible , here is an algorithm for characterizing the SE set: (1) Pick a

candidate strategy profile by specifying whether each element (  ) is 0, 1, or mixed.

(2) Given (  ), determine  and hence the ’s. (3) Then solve the dynamic pro-

gramming equations for the  ’s taking ’s as given (easy, since the system is linear).

(4) Then use the bargaining solution to get the ’s. (5) Given all that, check the best

response conditions, since these variables just constructed constitute a SE iff those

conditions are satisfied. (6) Repeat until exhausting possible strategy profiles. For

divisible , the procedure is similar but we solve  from (2) and  from (7).

Since  and  can be 0, 1 or in (0 1) there are 32 = 9 candidate profiles which we

classify into 4 different Regimes. Regime N, for no trade, has  =  = 0. Regime D,

for direct trade, has  = 0 and   0, so  never trades in WM and goes to RM with

positive probability. Regime I, for indirect trade, has   0 and  = 0, so  trades with

 in WM with positive probability, and  goes to RM while  does not. Regime B,
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for both, has   0 and   0, so both  and  go to RM with positive probability.

Within a Regime we also distinguish between pure- and mixed-strategy outcomes for

 and , and between cases where debt limits bind and are slack.13

Using the algorithm we can construct the SE set. The Appendix proves:14

Proposition 1: When  =∞ SE exists and is unique. Its dependence on parame-

ters is shown in ( ) space by Fig. 1 forQ = {} and Fig. 2 forQ =[0∞), where
̄ and ̄ are values at which the debt limits just bind, and the other boundaries

of the regions are defined in the Appendix.

Note that the graphs are not drawn free hand but come from numerical specifica-

tions, with parameters listed in the Appendix. Also notice each graph has two panels,

with  =  on the left and    on the right, to show the impact of  and 

having different bargaining power against , in addition to different ability to collect

debt from . The first result to highlight is that this partitioning parameter space

into regions each containing exactly one Regime that constitutes SE implies we have

existence and uniqueness.

In the graphs, solid borders separate regions supporting different Regimes; the

dashed borders show separate pure and mixed strategies; and the dotted borders sepa-

rate binding and slack debt limits. For Regime B, e.g., we have  = 1 or  ∈ (0 1) and
debt limits may or may not bind. So we know exactly what happens for all parameters.

13While this is a theory paper, it is empirically useful to identify factors leading to different Regimes,

since as mentioned different markets have different degrees of intermediation. Obviously many con-

sumer goods are bought from middlemen, like grocery stores, but there are still farmers’ markets.

Inputs are often bought from intermediaries, but apparently high-end purveyors of coffee, chocolate

and tea these days are buying direct from sources for several reasons (see Charles 2024). In the used

car market, 2/3 of sales go through dealers (Li et al. 2025). In asset markets, trade for fed funds is

about 40% intermediated, NASDAQ is closer to 100%, and many OTC markets including corporate

debt, munis, and emerging-market debt, are in between (Lagos and Rocheteau 2006). Also, there are

often middlemen chains — e.g., farmer to broker to distributor to retailer to consumer (see Wright and

Wong 2014). While formalizations like the one here are too stylized to capture every detail of these

diverse markets, they provide guidance as to what factors may be relevant.
14A technical detail is that we ignore outcomes with  ∈ (0 1) if they are nongeneric — e.g., if

 =  and  = , when  meets  in WM it is a matter of indifference who goes to RM,

so any  is a best response, but that is uninteresting, and would not survive obvious refinements like

imposing an  transaction cost to trade and letting → 0. Also, in the graphs we show the cutoffs ̄,

where debt limits just bind, in the range where  =  = 1 but in general this depends on parameters

(this does not affect the substance of the results much).
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Figure 1: SE with  indivisible and  =∞;  =  (left) or    (right).

Consider the left panel in Fig. 1. When both ’s are low (red region) Regime N

obtains since payments are too constrained to justify RM entry by  or  . Outside

that region various outcomes can occur. Regime D obtains if   ̄ (light yellow

region) since  is unconstrained in RM and hence there are no gains from WM trade,

or if   ̄ and we are below the 45
◦ line (dark yellow region) since while  is

constrained is more constrained. Now suppose   ̄ and we are above the 45
◦

line. When  is low, Regime I obtains, as the ’s justify RM entry by  but not

 (dark blue region where  is constrained and light blue where  is not). When

 is somewhat higher, Regime B obtains, since  makes RM profitable for  but

   makes it more profitable for  (dark green region where  is constrained

and light green where is not). The general conclusion, which may not be surprising,

but at least we make it precise, is that  is active when  is low and  high.

For another perspective, fix  and increase , moving horizontally through the

graph. In this case Regimes can switch once or twice. When  is very low we transit

from Regime N to D as  increases. When  is somewhat higher we transit from

Regime I to B and then from B to D. A general observation is that relaxing credit

frictions can lead to disintermediation.
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Now fix  and increase , moving vertically through the graph. When  is

low we switch from Regime N to I, a case where RM is open with but not without

(e.g., not if intermediation is shut down by regulation or taxation). For higher  we

switch from Regime D to I, so is not crucial for RM to open, but could still improve

welfare (see below). For even higher  we switch from D to B, and for  ≥ ̄ we

are always in Regime D. A switch from D to B shows middlemen can be active solely

due to their ability to enforce debt.

The above discussion maintains  = . If   , as in the right panel of

Fig. 1, there can be WM trade when   , which shows middlemen can be active

solely due to bargaining power, as is already known in the literature. In particular, the

upper right has Regime D in the left panel and B in the right. Also notice in the left

panel ̄ = ̄ while in the right ̄  ̄, since greater bargaining power means

 can fetch a higher price, so it takes bigger ̄ for the constraint to slacken.

Figure 2: SE with  divisible and  =∞;  =  (left) or    (right).

The above discussion maintains indivisible . When it is divisible,  is a choice

in WM, but still  =  in RM. See Fig. 2, which is similar to Fig. 1 since, to facilitate

comparison, they use the same parameters and the exogenous  in the indivisible case

is in the middle of its range in the divisible case. Making  divisible affects the graphs
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in several ways, one being that the boundaries can now be nonlinear while they were

linear in Fig. 1. In terms of substance, notice region N in now smaller than in Fig. 1,

because divisibility encourages entry by letting sellers better cater to market conditions.

Fig. 3 varies  and shows the effects on several variables with  fixed at either

a low (left panel) or high (right panel) value, where the curves are only drawn over

relevant ranges — e.g., if does not enter RM then  is not shown. Notice in the top

row  becomes active exactly when   , as we already know, given  = .

In the left panel, when starts going to RM  stops going, resulting in a switch from

Regime D to I and an increase in . In the right panel, when  starts going  does

not stop, resulting in a switch from Regime D to B while  remains the same because

 crowds out  one-for one. Hence, depending on parameters, entry by middlemen

may increase the number of sellers or simply crowd out producers.

Rows two and three in Fig. 3 show quantity/quality  and the unit price . In

the left panel, since only one type of seller enters RM there is only one  and one

. In the right, when both  and  go to RM there is dispersion in  and in

. While here  and  monotonically decrease with , due to the

concavity of (·), Fig. 4 fixes  and varies , and there average unit price in the

right panel is nonmonotone due to composition effects (the mix of  and  in RM).

Price dispersion is also nonmonotone: it is 0 for   2 and    and positive

for  ∈ (2 ). One implication is intermediation can generate dispersion in

price and quantity/quality. A perhaps less obvious one is in intermediated markets

average price and price dispersion can be nonmonotone in debt limits.15

Also notice in Fig. 3 that payoffs can increase with , due to effects on both the

extensive and intensive margins, while in the right panel of Fig. 4, higher  reduces

payoffs of  and  , as well as the average payoff, over some range, even though it

15As an aside, when we reduce search frictions fall by raising the constant in the meeting technology,

average price and price dispersion can both go up or down. This is relevant since some people are

puzzled about average price and dispersion not falling in the data with improvements in information

technology that seemingly capture higher search efficiency (see the discussion with references in Gong

et al. 2025). In fact, it is easy to get price dispersion nonmonotone in frictions — models like Burdett

and Judd (1983) already show that — while it is a little harder to get the average price nonmontone.
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Figure 3: Effects of  with  divisible,  =∞ and  low (left) or high (right).
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Figure 4: Effects of  with  divisible,  =∞ and  low (left) or high (right).
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raises the payoff for . In other examples, higher ’s can also lower ’s payoff — the

simplest case having  indivisible, so raising ’s means  pays more but does not get

more. This is not novel — it is well known that buyers can be worse off when liquidity

constraints are relaxed (more on this below). It is also not novel that  and  can

be worse off at higher ’s due to endogenous entry — as in many models, entry can

be too high or too low. In summary, lower payment frictions can increase or decrease

welfare, but we do not dwell on this because there are already many discussions in the

literature.16

4 Extensions

4.1 Imperfect Wholesale Credit

Above  = ∞ was assumed. Suppose now   ∞, so that  does not have

unlimited credit, or deep pockets, in WM. Then  is determined by (14), showing both

 and  need a positive surplus for WM trade. However, if  +   0 then a

binding  will not make   0, so we only need to check  ≥ 0.
It is not hard to verify that the conclusions of Proposition 1 continue to hold with

  ∞: SE still exists uniquely. This is true for indivisible and divisible , but
to save space we only show the partition for the former, in Fig. 5. The left panel has

  (), so WM payments by  cannot even cover  ’s production cost, and

hence only Regimes N and D are possible. The right panel has   (), so  can

cover  ’s production cost and may or may not be able to cover  ’s opportunity cost

of forgoing RM, so all Regimes are possible.

We could show the effects of , the way the effects of  and  are shown in

Figs. 3 and 4, but instead simply mention one result:  ’s payoff can fall when 

increases. Intuitively, they can end up paying higher  while not getting much, if

16See, e.g., Gong and Wright (2024), which is not about credit, but does have middlemen with

both extensive and intensive margins. Their finding is that efficiency on the former margin requires

bargaining powers satisfy the Hosios condition, while efficiency on the latter margin requires bargaining

powers satisfy the Mortensen rule. Since it is generally hard to satisfy both simultaneously, tax-subsidy

schemes have a role; we do not elaborate more to avoid diverting attention from the main messages.
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Figure 5: SE with  indivisible and   () (left) or   () (right).

anything, more in terms of , just like ’s payoff can go down when  increases

in Section 3. Anyway, the conclusion here is that imperfect WM credit is interesting,

and still tractable, although less so than when  = ∞, so we still like that as a
benchmark model.

4.2 Ex Ante Production

Next suppose production occurs before WM. Let  be the probability  produces, to

be determined along with  and . The definition of SE is similar to the baseline model

(see the Appendix). However, now there is a WM holdup problem, in addition to the

RM holdup problems mentioned above, since  () is sunk when  meets  . Also,

there is a new source of wasted output: in addition to sellers failing to meet  in RM,

now  might produce but neither meet  in WM nor go to RM.

One can check SE still exists uniquely. Reverting to  = ∞ and restricting

attention to indivisible , we present the results in Fig. 6. Since each element of

(   ) can be 0, 1 or mixed, there are more cases, although some are ruled out easily,

e.g.,  = 1 and  =  = 0, where  produces but never trades. Still, we must

distinguish between, e.g.,  = 0 with  = 0 and  = 0 with  = 1, even though both
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entail Regime N, because as usual to see whether  = 0 is a best response we must say

what happens off the equilibrium path if  were to have  and meet  in WM.

Figure 6: SE with ex ante prod. and  =  (left) or    (right).

A difference here is that as  increases, the Regime switches from N or D to B,

then to I, making Regime B transitional. This contrasts with Section 3, where once

we enter Regime B by increasing  we never leave (technically this is because, over

the relevant range, with ex ante production  agents mix using , while in Section 3

they mix using ). Also, now ’s payoff can fall with  for two reasons: there is a

composition effect, since when  enters RM they crowd out  , and the former charge

more; and again higher  can result in  paying more without getting much more.

In summary, ex ante production is interesting, but given the ex post version is more

tractable it remains the preferred benchmark.

4.3 Scrap Value

Now consider scrap value  0. In principle, this could increase the incentive for sellers

to enter RM by reducing the downside risk of not meeting . Also, after meeting

, it could affect the bargaining outcome through sellers’ threat points. Moreover,

depending on whether  is divisible,   0 can affect the intensive margin differently.
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To see this, first, on the one hand when  is divisible there is no benefit to carrying

  , where  comes from RM bargaining, given the maintained assumption

0 (0)  . Therefore,  =  in equilibrium where  = () + . Hence

 increases with , and so does sellers’ surplus , just like the baseline model with

 = 0. This means   0 does not qualitatively change equilibrium, and the Regime

characterization is the same as before.

On the other hand, when  is indivisible in WM but divisible in RM, with   0

we can no longer guarantee  = . Instead,  is the minimum of three possibilities:

the indivisible  sellers bring to RM; the efficient ∗ that solves  = 0 (∗); or the

generalized Nash bargaining solution that solves  =  () with

() =


0() + ()

0() + 
 (16)

This is the standard formula for generalized Nash bargaining with liquidity constraints

(e.g., Lagos and Wright 2005), which reduces to  () = () + , as in the case

of divisible , when the constraint is slack.

In any case, with   0, SE again exists uniquely, and characterization of Regimes

in parameter space is similar to Section 3. Again, this extension is not too different

from  = 0, so that remains the baseline model.

4.4 Repos

Next consider a type of secured credit and repos (i.e., repossessions, not repurchase

agreements), which is one way to get and exogenous.
17 As a concrete example,

suppose  wants a car that can potentially be obtained in two ways. One is to buy

it from  , although it is better for this discussion to interpret  not as a producer,

but simply someone with a car for sale. The other is to buy it from a used-car dealer

 . The idea here is that if  fails to make a required payment in the CM, the seller

can try to repo the car, where the probability that type  sellers succeed is  for

17This setup is in the spirit of Kiyotaki and Moore (1997). Section 5 pursues a different approach,

which delivers much more, but this one has the virtue of simplicity.
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 ∈ {}. It is eminently reasonable to say that used-car dealers are relatively good
at this,   .

Suppose  = ∞ and  = 0. Also, assume now that the  purchased in RM

is not consumed until the end of the period. Thus, if the CM payment is made, 

enjoys  (); otherwise  gets  () with probability 1−  and 0 with probability

. This makes the incentive constraint for repayment  ()−  ≥ (1− ) ().

Again there is no default on the equilibrium path, but the option to default generates

an endogenous constraint  ≤  ≡ (). Now from (7)  binds iff  ≤ .

Note that we assume the seller does not get any value from the repo (one can assume

otherwise but that raises some issues). In the car example, e.g., one can say the vehicle

depreciates (has some scrap value that is small). Hence, the binding constraint on DM

trade is still the incentive condition for buyers’ repayment. This means the repo is a

punishment for reneging buyers, not a recovery for sellers.

With indivisible , SE is basically the same as the baseline model — just set  =

(). With divisible ,    implies equilibrium is again the same as the baseline

model, while  ≤  implies  = () where  solves 
0() = 0(). In

any case, again SE exists uniquely, and its dependence on parameters looks basically

the same as the graphs in Section 3 with  replacing  on the axes. However, there are

some differences in implications. For one, reductions in credit frictions nowmean higher

, and in the range where debt limits bind, that raises  as well as , intuitively,

since  is effectively sellers’ bargaining power as well as the constraint.

Like the other extensions, this is interesting, but does not obviously dominate the

benchmark. One can say it at least takes a step toward endogenizing , but we plan to

go further in that direction in Section 5. First, we mention a reinterpretation. Instead

of  being the probability a seller recovers what is owed, it can be the fraction of what

is owed — i.e., partial default can replace probabilistic repo.18 Still we can maintain

18A detail is that if the seller takes back a fraction  of  the buyers payoff should be [(1− )],

not (1− ) (). So perhaps it is better to say the seller can seize a fraction of the promised payment

 rather than .
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the assumption that whatever gets recovered gives 0 value to the seller, so again repos

affect the incentive of buyers to repay, not the incentive of sellers to grant credit in the

first place, but it may be interesting to proceed differently in future work.

5 Intermediation Cycles

5.1 Endogenous Debt Limits

The idea is that now buyers can renege on promised payment, but risk being punished

by taking away their future credit, as in Kehoe and Levine (1993), which makes the

model inherently dynamic. Since there can be two types of RM sellers,  and , there

are two types of future credit the mechanism could take away from , and we discuss

both below. To keep the presentation manageable, assume  and  have the same

RM bargaining power and  = 0. Also,  is divisible for now, while the indivisible

case is discussed in Section 5.3.

First suppose faces no credit frictions in either WM or RM,  =  =∞,
but credit between  and  is limited by , which is determined as follows. In the

CM at ,  can renege on  owed to  at a proportional cost,  , with  ∈ [0 1].
This captures resources used up by opportunistic behavior, similar to “cash diversion”

models (e.g., DeMarzo and Fishman 2007; Biais et al. 2007). Moreover, opportunistic

agents are only caught and hence can only be punished with probability  ∈ [0 1],
which plays a role similar to the random repo probability  in Section 4.4.19

When  is caught reneging on  , assume for now that they lose future credit with

 sellers but not  sellers. One rationale is that while taking away all future credit

19Both  and  measure disincentives to renege. While they are not critical (we could set  = 0 or

 = 1) they are included because they have interesting implications in related work using mechanism

design. In banking theory, e.g., they are used by Gu et al. (2013b) and Huang (2015) to discuss the

choice of who should be a banker as well as the optimal number of bankers. In monetary theory, e.g.,

Kocherlakota (1998) shows that fiat currency is never welfare enhancing (it is dominated by credit) if

 = 1, but can be if   1. One interpretation of   1 is that debt payments are randomly monitored

by the mechanism, like the IRS randomly audits tax payments. Another is that payees know with

certainty if a default occurs, but can only communicate this to the mechanism randomly. Finally, on

this topic, here ’s cost of default  is a deadweight loss, but as discussed in Section 4.4 it could go

to the seller, so that it looks like partial default.
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is harsher, it might not be viable: given  and  have gains from RM trade and

 =∞, meaning  can enforce payment by , having  deny credit to  might

not be self-enforcing. This contrasts with having  deny  credit after a default, since

if  did it before they will do it again given there is no further punishment available.

Still, we later consider taking away all future credit, effectively putting defaulters in

autarky, perhaps simply by excluding them from RM.

Under the current assumptions the incentive condition for  to pay debt  is

 
(0)−  ≥ −  + 


(0) + (1− )


(0) (17)

where  
 is ’s CM deviation payoff, which is the continuation value from future

trade with but not  . An endogenous debt limit satisfies  ≤  with equality,

which by (17) means

 = 

£
 
(0)−  

(0)
¤
 (18)

where  ≡ (1− ) captures the combined disincentive to misbehave.

From (1) and (6),  
(0) −  

(0) = 
£
 
+1(0)−  

+1(0) + +1+1
¤
where

+1 is ’s probability of trading with  , and +1 is the corresponding surplus

 would lose from the punishment. Since both  and  depend on  (18)

reduces to the difference equation

 = ∆ (+1) ≡ +1 + +1 (+1)+1 (+1)  (19)

In words,  is the most a debtor would pay at  given the path of future debt limits,

described recursively in (19). A steady state, or SS, of this system,  = ∆ (),

constitutes a SE with an endogenous . Other (nonnegative and bounded) solutions

to (19) are dynamic equilibria, or DE, with time-varying debt limits.

To be explicit,  depends on   and , which depend on  via (15) and (13),

while  depends on  via (2) and (7). There are various possibilities given the

(  ) that can be consistent with equilibrium. Using the cutoffs from the graphs shown
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above, we have:

 () =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if  ≤ 2

( 1)(1− ) if 2    3

̄(1− ) if 3 ≤   ̄

[̄(1− ) ̄] if  = ̄

̄ if   ̄

(20)

 () =

⎧⎪⎨⎪⎩
0 if  ≤ 2

(1 − 1) if 2    ̄

(∗)− ̄ if  ≥ ̄

(21)

where  (·) is the RM meeting technology, ̄ = ( 1) is ’s maximum

RM trading probability, ∗ solves ̄
0() = 0(), and  satisfies  ’s entry

condition (1 ) = () + .

The system  = ∆ (+1) is shown in Fig. 7.
20 Notice ∆ (·) is convex on the

interval [2 3], and otherwise piecewise linear. Also, in the linear segment on the

interval (3 ̄), ∆
0  1 if ∆(3)  3 and ∆0  1 if ∆(3)  3. These

observations immediately imply the following:

Proposition 2: With  =  = ∞,  = 0 is always a SS. It is unique if

(1 − )̄  ̄

£
(∗)− ̄

¤
; otherwise, generically there is also a SS with

  ̄ and one with  ≤ ̄. If 1−   ̄(1−)(1− 1) the middle
SS has   ̄; otherwise,  = ̄.

Fig. 7, with two panels drawn for different , shows regions indicating the Regimes

I, B or D (Regime N cannot happen here because  =  =∞ and  is assumed

sufficiently small so at least  is always willing to go to RM). Both panels have three

SS. In the left panel, with  low, the middle SS is ̄. In the right, with  higher,

the incentive to default is reduced, which raises the high SS and lowers the middle SS

so it is to the left of ̄.

Now consider DE, i.e., nonconstant solutions to the system. From Fig. 7 it is clear

that a  path is a DE iff it is not a SS and starts anywhere between 0 and the high

20Notice ∆ (·) is set-valued at +1 = ̄ since any  ∈ [0 1] can be supported at this point. We
argued in fn. 14 that, when debt limits are exogenous, if  and  are indifferent to trade it makes

sense to set  = 0. The situation is different here: we may need  ∈ (0 1) to have equilibrium.
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Figure 7:  = ∆ (+1) with  =  =∞ and  low (left) or high (right).

SS. Clearly all DE paths converge to the middle SS. These paths can entail Regime

switching, from either D to B or I to B, but there is at most one switch — when ∆ is

monotone increasing there are no cycles with recurrent Regime switching (yet).

5.2 Stochastic Cycles

While monotone increasing ∆ rules out deterministic fluctuations it does not rule

out stochastic fluctuations — i.e., sunspot equilibria. To pursue this, we keep the

environment the same but generalize the equilibrium concept by introducing a random

process for a sunspot variable , with realizations of +1 observed by all at  after

CM closes. Saying  is a sunspot means that it has no impact on fundamentals, but it

might affect endogenous variables. For our purposes, it suffices to use a 2-state process

with time-invariant transition probabilities  = prob(+1 = −| = ) and focus on

stationary sunspot equilibrium, or SSE.

One can rewrite the equilibrium conditions for the  ’s, ( ), etc. as depending on

. The CM problem for , e.g., when  = 1 is

 
1(Ω) = max



©
()− + 

£
(1− 1)


1 + 1


2

¤ª
st  = Ω+ 

As the subscripts indicate, endogenous variables now depend on the state  ∈ {1 2} but
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not the date. Rewriting the other conditions in this way, after some algebra, analogous

to reducing SS to  = ∆ () we can reduce SSE to

1 = (1− 1)∆(1) + 1∆(2) (22)

2 = 2∆(1) + (1− 2)∆(2) (23)

Trivially, a SS solves these equations. We seek other solutions, say, without loss of

generality, those with 2  1.

Following textbook methods (Azariadis 1993), we first solve (22)-(23) for the ’s

former as functions of the ’s:

1 =
1 −∆(1)

∆(2)−∆(1)
and 2 =

∆(2)−2

∆(2)−∆(1)
 (24)

A pair (1 2) together with the probabilities in (24) constitutes a SSE as long

as 1 2 ∈ (0 1). Whenever there are three SS, using Fig. 7 it is routine to show
1 2 ∈ (0 1) iff 1 is between 0 and the middle SS while 2 is between the

middle SS and the high SS. Hence, there are many equilibria where  fluctuates

randomly as a self-fulfilling prophecy. This proves:

Proposition 3: Assume  is divisible, and  =  =∞ are exogenous while 

is endogenous. When there are three SS, there exist SSE with  fluctuating across

any 1 between 0 and the middle SS and any 2 between the middle and high SS,

with transition probabilities given by (24).

Some similar outcomes appear in earlier credit papers, but the logic is very different.

Gu et al. (2013), e.g., take this approach: They have a deterministic system  =

∆ (+1) with  (0) = 0, like we do, but look at a SS where ∆ crosses the 45 from

above, unlike what we do. That is because their model does not, under reasonable

conditions, have a SS where ∆ crosses from below. An elementary result is that when

∆0 ()  −1 at SS there exists a 2-cycle, i.e., there exists 1  0 and 2  1

such that 1 = ∆ (1) and 2 = ∆ (1). Another standard result is that if

a 2-cycle exists there also exist SSE (notice that a 2-cycle is a limiting version of SSE

with 1 = 2 = 1, then appeal to continuity).

27



That approach is irrelevant here because ∆0  0. But whenever we have three SS

∆ crosses the 45 line from below at the middle one, which implies the existence of

SSE without cycles. Moreover, in a sense our SSE is more robust: it does not require

anything in particular about how the terms of trade are determined, while ∆0  0

requires some restrictions on price formation.21

What is the intuition? First, it is no surprise that there can be multiple SS with

endogenous debt limits: if agents believe  = 0 ∀  0 then there is no punishment

from reneging at 0, so they will renege on any debt   0, and that makes  = 0 a SS;

but if they believe  = ̂  0 ∀  0, then taking away future credit can dissuade

them from reneging at 0, so there can be a SS at some ̂  0. Now add sunspots. If

0 = 0 but agents believe  will increase at some stochastic 1  0, they may not

risk punishment by reneging on small   0, so there is a tendency for  to move up

from  = 0; and if 0 = ̂  0 but agents believe  will decrease at some stochastic

2  0, there is a tendency for  to move down from the  = ̂. Heuristically,

this suggests there can be SSE fluctuating across 1  0 and 2 ∈ (1 ̂), although

technically that only works if ∆ crosses the 45◦ from below.

It is clear that SSE can involve recurrent Regime switches, across I and D, across B

and D, or across I and B: or we can always stay in Regime B. Now, to be clear, these

fluctuations are not due to the presence of  per se, but to the self-referential nature

of endogenous debt limits. Yet these fluctuations have implications for intermediation.

In this specification, e.g., we can show intermediaries attenuate fluctuations in a precise

sense, as we now discuss.

First, in the SSE described above one can check that when1 is low the constraint

binds, and when 1 is high it may or may not bind. This implies 1  2. Also,

one can check 1  2. Hence, when  brings lower  to RM, due to tighter

credit conditions,  brings higher , acting as a buffer on the intensive margin.

21Gu et al. (2013) get ∆0 ()  −1 at SS by having the surplus of borrowers higher when  is lower.

In the bargaining version of their setup, they can get that using Nash bargaining when ’s power is

  1; it does not work with  = 1, nor with any  when they use Kalai bargaining. These restrictions

are not relevant here — it is no problem using Kalai or Nash with any .
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Further,  can be a buffer on the extensive margin, when SSE has switching between

Regime I and B. If   0 then RM is always open, with only  participating

when credit is tight, and both  and  participating when credit is loose. If instead

 = 0 we can get SSE where RM shuts down when credit is tight. So on both margins,

middlemen can attenuate fluctuations.22 However, this is not general: as shown below,

in alternative formulations  may amplify fluctuations.

Before moving to other ideas, let us say what happens if the punishment is that

defaulters lose all future credit, putting them in autarky (again, perhaps simply ex-

cluding them from RM). The outcome is similar except the lowest SS has   0 not

 = 0. The reason is that punishment means losing trade with  , not just with  ,

so  would honor a small current debt to  even if future debt limits with  were 0.

Otherwise, the results on SSE hold with minor modification.

The next scenario makes  and  both endogenous, still with  =∞. For
this, it is easiest to use the punishment in the preceding paragraph, autarky, which

means  
 = (1− )−1 [()− ], although note that this no longer gives the result in

the preceding paragraph, that the lowest SS is   0, because that was for exogenous

. Here there is always a SS with =  = 0. What else is possible? In principle

the answer is more complicated with the bivariate system

 = ∆ (+1+1) (25)

 = ∆ (+1 +1)  (26)

But conveniently, (18) implies the two debt limits are proportional:  =  ≡
. Thus we can analyze a univariate system for  then set  = .

If   1 then  is never active, so consider   1. The analog of (19) is

 = +1 +  (+1+1 + +1+1)  (27)

Notice ’s expected surplus from trading with and with  appear on the RHS, since

22This is what Weill (2007) calls middlemen “leaning against the wind,” which may be bad language,

since it commonly refers to government stabilization policy. Usage aside, although his model is different

from ours the spirit is similar.
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Figure 8:  = ∆ (+1) with  =∞;  low (left) or high (right).

now both are taken away by the punishment. The system is shown in Fig. 8, where

the left panel has  close to 1, so  ’s advantage over  is small, and the right has 

bigger. Still, the results on SS are similar to Proposition 2, and the results on SSE are

similar to Proposition 3 except now  and  both fluctuate.

But some implications change. For one, now Regime N is possible. For another, in

SSE  ’s activity is positively correlated with  ’s: when credit is tight, it is tight for

 and  , so both ’s are low. Instead of acting as a buffer, here intermediation exac-

erbates cycles. So whether intermediation attenuates or amplifies instability depends

on details — theory does not settle that debate.

5.3 Deterministic Cycles

In Section 5.2 deterministic cycles cannot exist. For completeness, we now show they

can exist with indivisible . For this, assume  = ∞ while both  and  are

endogenous, and again let the punishment for default be autarky. One can check the

results on SS are similar to Proposition 2. Moreover, the ’s are still proportional, so

we can again analyze a univariate system .

The difference from Section 5.2 is that now, with indivisible , it is possible to have

∆0  0, because  can decrease with . This happens because higher  means 
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pays more but does not get more. That does not happen if  is divisible because then

 produces less when  is lower. It is the choice of  made at the production stage

that implies ∆ is increasing in Section 5.2.23

Figure 9:  = ∆ (+1) with  =∞; 2-cycle (left) and 3-cycle (right).

Having explained this, we point out that from Fig. 9 the SSE constructed above

still exist with indivisible , happening around the middle SS where ∆ crosses the 45

line from below. What is new is that we can find cases with ∆0  −1 at the high SS.
Then there are 2-cycles as shown in the left panel, and hence there are SSE. Indeed, we

can find parameters giving 3-cycles, fixed points of the third iterate ∆3 (·), as shown
in the right panel. The existence of 3-cycles implies the existence of -cycles for any

integer , plus chaotic dynamics, by the Sharkovskii and Li-Yorke theorems (again see

Azariadis 1993 for a textbook treatment).

Therefore, with indivisible  the model can generate many dynamic equilibria with

deterministic or stochastic Regime switching. However, we still like the version where

23In case it is not obvious, we can explain why cycles might emerge when  is decreasing in .

If  is low next period and  is decreasing, then  is high next period, and that makes  is

less inclined to default this period, so this period’s endogenous  is high. And vice versa if  is

high next period. Therefore there is a tendency for  to oscillate. Note that  cannot be globally

decreasing in , of course, since  = 0 implies  = 0, but it can be decreasing if  is close to

the just-binding ̄. Also note that having  decreasing in  is necessary but not sufficient for

∆0()  0 because ∆() also has an increasing linear term.
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 is divisible, since indivisibility is subject to possible objections. One has to do with

the quantity/quality distinction. As mentioned, even if  is only interested in buying

1 car, that does not mean we should fix  = 1 if cars can differ in quality at the

production stage. There are also technical issues in models with indivisible goods, as

special cases of models with nonconvexities. In particular, agents may have an incentive

to trade using lotteries to convexify the feasible set.

By way of example, suppose you want to sell your car, which is fixed in quantity

and quality. If a buyer can pay at most , what is there to bargain over? You can

propose to accept  and transfer the car to the buyer with probability . Since  can

be anything in [0 1] the indivisibility effectively vanishes. In any case, one can use the

framework with or without indivisibilities.

6 Conclusion

This paper studied environments with trade intermediated by middlemen, and debt

limits that were either exogenous or endogenous. The contribution can be seen as

putting payment frictions into models of intermediated trade and/or putting interme-

diaries into models of constrained credit, leading to interesting interactions between

two literatures. The theory applied to markets for goods, inputs or assets. We also

considered both indivisible and divisible quantity/quality, so we could analyze both

intensive and extensive margin effects. With exogenous debt limits we characterized

equilibrium in a benchmark specification and several variants, and in each case proved

existence and uniqueness. We also discussed how parameters (debt limits, bargaining

powers, etc.) determine the pattern of exchange — no trade, only direct trade, only

indirect trade, or both direct and indirect trade — which is relevant because in reality

exchange patterns vary across markets and across time.

Then we endogenized debt limits by saying repayment must be incentive compati-

ble given punishment for default was the loss of future credit. That generated multiple

stationary equilibria, as well as equilibria with fluctuations in credit conditions, inter-
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mediation activity, prices, etc. These equilibria can display Regime switching, with

recurrent spells where some types of trade diminish or even freeze for a while. These

fluctuations, which can be deterministic or stochastic, were self-fulfilling prophecies.

The point is not that real-world cycles are best explained as driven exclusively by be-

liefs; it is that when simple models generate such outcomes, it lends credence to the

idea that these may be relevant in actual economies. Our emphasis was not that inter-

mediation causes instability; it was that limited commitment provides an endogenous

role for intermediation and an endogenous source of dynamics, resulting in interesting

links between middlemen and volatility. We found middlemen can attenuate or amplify

fluctuations, depended on details, on both the extensive and intensive margins.

The objective of the project was not to explain one major empirical observation

or prove one big theorem. It was to develop a flexible, tractable framework for the

analysis of intermediated trade and credit frictions. Future work may put the frame-

work to use studying applications geared to particular kinds of markets, or perhaps

designing tax/regulatory schemes to promote desirable outcomes. Potentially fruitful

modeling may involve more work integrating middlemen models following Rubinstein

andWolinsky (1987), which generally focus on goods markets, with those in finance fol-

lowing Duffie et al. (2005), which focus on asset markets. An interesting feature of the

latter is the way suppliers and demanders are determined by fundamental idiosyncratic

shocks. An interesting feature of the former is the way dealers deal with inventories.

Combining these might lead to new insights, with perfect or imperfect credit, but we

think especially with the latter.
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Appendix

Proof of Proposition 1: We derive the borders in Fig. 1 and 2. First, from the RM

bargaining problem  = min {() } for  ∈ {}. When Q = {},  =

. When Q = [0∞),  = min {−1() 
∗
} where ∗ satisfies 

0 (∗) =

0 (∗). Now rewrite the best response conditions as

 =

⎧⎨⎩ 0 if  − ()−  ≤ 0
[0 1] if  − ()−  = 0

1 if  − ()−  ≥ 0
(28)

 =

⎧⎨⎩ 0 if  − ()−  ≤  [ − ()− ]

[0 1] if  − ()−  =  [ − ()− ]

1 if  − ()−  ≥  [ − ()− ]

(29)

Recall  = (1 ) and  =  [ + (1− )] where ,  and

 are fixed. Hence (28)-(29) are two equations in (  ), and the solution is an SE.

We then derive the borders for Regimes by substituting the corresponding (  ) into

(28)-(29). Let  ≡  (1 [ + (1− )]) and let  be the  that

type  sellers take to RM when the best responses are (  ). Define the following

functions.

(  ) = [() + ]  (30)

(  ) = [() + ]  (31)

() = [01 − (01) + (01)] 01 (32)

The cutoffs where the debt limits just bind are ̄ =  (1) and ̄ =  (1).

Other cutoffs shown in the graphs are

1 = (0 0), 2 = (1 0), 3 = (0 1), 1 = (0 0), 2 = (1 0)

We now go through the different Regimes:

Regime N :  =  = 0 implies  − () −  ≤ 0 and  − () −  ≤ 0.
Hence, Regime N is a SE when  ≤ 1 and  ≤ 1.

Regime D:  = 0 while there are two cases for . In the first case  ∈ (0 1),  −
() −  ≤ 0 =  − () − . This is a SE when 1    3 and
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 ≤ (0 ). In the second case  = 1,  − ()−    − ()− .

This is a SE when  ≥ 3 and  ≤ ().

Regime I :  = 0 implies  − () −  ≤ 0. There are two cases for  . In the
case  ∈ (0 1),  − () −  = 0. This is a SE when  ≤ (  0) and

1    2. In the case  = 1,  − () −   0. This is a SE when

 ≤ 2 and  ≥ 2.

Regime B:  = 1 implies  − () −  ≥  [ − ()− ]. There are

two cases for . In the case  ∈ (0 1),  − () −  = 0. This is a SE when

2    3 and   (1 ). In the case of  = 1,  − () −   0.

This is a SE when  ≥ 3 and   ().

This partitions parameter space as shown in Fig. 1 and 2. Therefore, for all para-

meters there is one and only one SE. ¥

Details for Section 4.2: The model is slightly different with ex ante production.

The CM value function for  is

 
 (Ω) = max



©
()− + 

£
 

+1 () + (1− ) 
+1 (0)

¤ª
(33)

st  = Ω+ −  ()

where  is the probability of producing. The CM problem for or  is similar except

that there is no production choice, so simply set  = 0.

The WM value functions are

 
 () =  

 (0) + 
£
 
 ()−  

 (0)
¤

(34)

+(1− )max


©

£
 
 ()−  

 (0)− 
¤ª

 
 =  

 (0) + 
£
 
 ()−  

 (0)−  − 
¤

(35)

The RM value functions, bargaining problems, steady state and best response condi-

tions for  are same as in the baseline model. The best response conditions for  and

 are

 =

⎧⎨⎩
0 if 

£
 
+1 ()−  

+1 (0)
¤ ≤  ()

[0 1] if 
£
 
+1 ()−  

+1 (0)
¤
=  ()

1 if 
£
 
+1 ()−  

+1 (0)
¤ ≥  ()

(36)
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 =

⎧⎨⎩
0 if  

 ()−  
 (0) ≤ 

[0 1] if  
 ()−  

 (0) = 

1 if  
 ()−  

 (0) ≥ 

(37)

SE is defined by: ( 
 ) for each type  in each market  satisfying (4)-(6) and (33)-

(35); ( ) satisfying (7)-(9);  satisfying (12); and (   ) satisfying (15) and

(36)-(37). The analysis follows the same procedure as the baseline model. ¥

Parameters for the figures: The matching function is ( ) = ( +

) with  = 1 for WM and  = 08 for RM. The utility function is () = 0
1 .

The cost function is () = 0
1 with (0 1) = (001 2),  = 015. Bargaining

power in WM is  = 05 and indivisible  = 2.

For the Figs. in Section 3 and 4, (0 1) = (1 05) and  =  =  = 1.

When RM bargaining powers equal,  =  = 05; otherwise, ( ) = (04 06).

The figure-specific parameters are as follows. Fig. 3 has  ∈ {02 05}. Fig. 4 has
 ∈ {025 075}. Fig. 5 has  ∈ {002 01}. Fig. 6 has  ∈ {02 05} and
 = 075. For the Figs. in Section 5, (  ) = (3 3 1) and  = 05. The

other parameters are shown in Table 1.

Table 1: Other Fig. Parameters
Figure   (0 1) 
7 {2, 4} - (2, 0.2) 0.5

8 {3 1} {4 5} (2, 0.1) 0.5

9 16 17 (1, 0.5) 0.98
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